qweqweqe123123

Топологическое разбиение

Метод топологического разбиения (topology decomposition approach) для двумерного случая был разработан Ворденвебером [ 160]. Согласно этому методу объект аппроксимируется многоугольником, который, в свою очередь, разбивается на множество крупных элементов (gross elements) соединением его вершин до получения треугольников (рис. 8.13, а). Затем крупные элементы разбиваются на более мелкие до тех пор, пока не будет достигнута желаемая плотность ячеек сетки (рис. 8.13, б). Размеры и форма элементов в данном алгоритме не могут быть заданы пользователем, поскольку крупные элементы зависят только от исходной топологии объекта, в частности от распределения вершин. Вершины, относящиеся к одному крупному элементу, могут быть найдены методом триангуляции Делоне, описанным в предыдущем разделе.

Топологическое разбиение

Для формирования набора треугольников по исходным вершинам Ворденвебер разработал операторы, аналогичные операторам Эйлера, применяемым в объемном моделировании. Первый оператор Ворденвебера ОРj применяется к объекту для удаления имеющихся в нем отверстий (рис. 8.14). Затем по вершинам объекта строятся треугольники, которые отделяются от объекта рекурсивным применением оператора ОР1, пока вершин не останется всего три. Последний треугольник строится оператором ОР2.

После преобразования объекта в набор крупных треугольников осуществляется их детализация, позволяющая достичь требуемой плотности сетки. Детализация может быть проведена тремя методами (рис. 8.15). На рис. 8.15, а показан метод, применяемый в том случае, если два узких треугольника имеют общую длинную сторону. На общей стороне создается еще один узел, после чего соседние треугольники делятся на части путем соединения их вершин с новым узлом. На рис. 8.15, б показано, как большой треугольник делится путем добавления нового узла в его центре тяжести. В результате деления перечисленными двумя методами может получиться так, что узкие треугольники, уже отвечающие требованиям к плотности сетки, будут иметь общую сторону (рис. 8.15, в). В этом случае качество сетки может быть повышено благодаря использованию второй диагона- ли четырехугольника, образуемого вершинами двух исходных треугольников.

Учтите, что результат анализа методом конечных элементов может быть недостаточно точным, если в сетке будет слишком много узких треугольников.

Топологическое разбиение

Топологическое разбиение

Метод топологического разбиения может быть обобщен на трехмерный случай.. Объект аппроксимируется многогранником, который разбивается на тетраэдрические элементы путем последовательного соединения вершин. Затем тетраэдрические элементы измельчаются делением на более мелкие тетраэдрические элементы. By и Томасма [159] предложили операторы, аналогичные операторам Ворденвебера, для облегчения процесса построения тетраэдрических элементов. Эти операторы, действие которых демонстрируется на рис. 8.16, используются в следующем порядке. Сначала оператор Т3 применяется к самому объекту для устранения отверстий в нем (рис. 8.16, в). Обратите внимание, что эта операция приводит к появлению двух побочных тетраэдров. Затем от объекта отделяются выпуклые углы, в которых смыкаются три ребра (такие углы называются выпуклыми трехвалентными вершинами). Это делает оператор Т1(рис. 8.16, а). Оператор Т, применяется рекурсивно до тех пор, пока не останется ни одной выпуклой трехвалентной вершины. Если ни одна из вершин не является выпуклой трехва лентной, применяется оператор Т2, выделяющий из объекта тетраэдр (рис. 8.16, б). После его применения образуются новые выпуклые трехвалентные вершины, поэтому снова применяется оператор T1 Процедура продолжается до тех нор. пока от объекта не останется один тетраэдр.

Топологическое разбиение

Смотрите также